Business Intelligence & Data Analytics

DAT 103
Fermé
Contact principal
McMaster University Continuing Education
Hamilton, Ontario, Canada
Instructor
(22)
6
Chronologie
  • juin 11, 2023
    Début de expérience
  • juin 17, 2023
    Project Scope Meeting (TBD)
  • juillet 18, 2023
    Midway Check-in (TBD)
  • août 14, 2023
    Fin de expérience
Expérience
1/2 match de projet
Dates fixées par le expérience
Entreprises privilégiées
N'importe où
Any
N'importe qu'elle industrie

Portée de Expérience

Catégories
Analyse des données Étude de marché Stratégie de vente
Compétences
business analytics storytelling and data visualization data analysis, data science concepts, text analytics business and analytical problem framing model development deployment and documentation
Objectifs et capacités de apprenant.es

This course is part of the Data Analytics certificate program. Students in the program are adult learners with a post-secondary degree/diploma in computer science, engineering, business, etc. The course explains how to apply data analytics skills to the area of business intelligence (BI). Focus is placed on the components of the business intelligence project lifecycle such as project planning, BI tool selection, data modeling, ETL design, BI application design and deployment and reporting. The project(s) will allow the students to apply BI practices and analysis.

Apprenant.es

Apprenant.es
Formation continue
Tout niveau
24 apprenant.es dans le programme
Projet
40 heures par apprenant.e
Les apprenant.es s'auto-attribuent
Équipes de 3
Résultats et livrables attendus

The final project deliverables will include:

  • A report on students’ findings and details of the problem presented
  • Future collaboration ideas will be identified based on current project outcomes
Chronologie du projet
  • juin 11, 2023
    Début de expérience
  • juin 17, 2023
    Project Scope Meeting (TBD)
  • juillet 18, 2023
    Midway Check-in (TBD)
  • août 14, 2023
    Fin de expérience

Exemples de projets

Exigances

The project provides an opportunity for businesses and students to identify and translate a real business problem into an analytics problem(s). The projects will allow the students to apply the acquired data analytics skills to the area of business intelligence (BI). The projects can be short and based on the information provided the students will apply their learnings to address the sponsors business problem. Some examples are:

  • Perform data visualization
  • Perform various types of analysis: Descriptive, Predictive and Prescriptive, which will be performed based on the provided business problem
  • Implement key processes including: data hygiene, ETL, modeling and reporting
  • Explain the forecasting modules used in developing the solution(s)

You should submit a high-level proposal/business problem statement including relevant data sets and definitions, a list of acceptable tools (if applicable), and expected deliverables. Business datasets could be provided based on a non-disclosure agreement or in an anonymized/synthetic data format that is relevant to your organization and business problem. The course instructors will review the documents to confirm the scope and timing of the proposed problem and its alignment with the capstone course requirements.

Analytics solution may be applicable for (however they are not limited to) the following topics:

  1. Customer acquisition and retention
  2. Quantifying Customer Lifetime Value
  3. Cross-sell and upsell opportunities
  4. Develop high propensity target markets
  5. Customer segmentation (behavioral or transactional)
  6. New Product/Product line development
  7. Market Basket Analysis to understand which items are often purchased together
  8. Ranking markets by potential revenue
  9. Consumer personification

To ensure students’ learning objectives are achieved, we recommend that the datasets are at least 20,000+ rows in size. Data need to be ‘clean’. If more than one database is provided, which must be conjoined, students will be required to integrate them. This supports the learning experience and minimizes partner data preparation.

Critères supplé mentaires pour entreprise

Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:

  • Q1 - Case à cocher
  • Q2 - Texte court
    What's your dataset size? Please note that ideally the datasets should be at least 20,000+ rows in size.
  • Q3 - Case à cocher
  • Q4 - Case à cocher
  • Q5 - Case à cocher
  • Q6 - Case à cocher