Data-Driven Insights - Business Analytics

QMBE 1320
Fermé
Contact principal
Hamline University
Saint Paul, Minnesota, United States
Josh Beverly
Assistant Professor of Quantitative Analysis
(4)
4
Chronologie
  • avril 21, 2025
    Début de expérience
  • mai 8, 2025
    Fin de expérience
Expérience
1/2 match de projet
Dates fixées par le expérience
Entreprises privilégiées
United States
Tout type de entreprise
N'importe qu'elle industrie

Portée de Expérience

Catégories
Visualisation des données Analyse des données Modélisation des données Data science
Compétences
presentations business analytics data science business intelligence data analysis microsoft excel
Objectifs et capacités de apprenant.es

At Hamline University, students in the Introduction to Business Analytics course are developing practical data analysis and storytelling skills to prepare for careers in data science and business intelligence. Learners work with real-world datasets to clean, analyze, and derive actionable insights using Excel.


Employers participating in this experience will engage directly with students, offering guidance, sharing project-specific resources, and providing feedback. Active collaboration is key, including regular check-ins, supporting student inquiries, attending final presentations, and delivering constructive evaluations—all facilitated through the Riipen platform.

Apprenant.es

Apprenant.es
Premier cycle universitaire
Niveau Débutant, Intermédiaire
44 apprenant.es dans le programme
Projet
20 heures par apprenant.e
Les Éducateur.trices affectent les apprenant.es à des projets
Équipes de 4
Résultats et livrables attendus

Expected project outcomes, including:

  • Data wrangling and cleaning
  • Probability and Statistical Inference
  • Descriptive Statistics
  • Data Visualizations
  • Linear Regression and/or Time Series/Forecasting Analysis


Employers will receive comprehensive deliverables showcasing the learners' abilities, including:

  • A professional Word report detailing background information, main project questions, data preparation/cleaning, analysis strategies, key findings/insights/recommendations and visualizations.
  • A final Excel file containing cleaned, analyzed, and well-documented data.



Chronologie du projet
  • avril 21, 2025
    Début de expérience
  • mai 8, 2025
    Fin de expérience

Exemples de projets

Employers are encouraged to submit projects that align with the students’ analytical skills and course objectives. Practical data analysis applications interesting to undergraduate students are ideal. Previous projects have included:

  1. Pet Adoption Trends Analysis: Clean and analyze Petfinder.com dog data to identify adoption patterns and recommend strategies for shelters.
  2. Hotel Booking Patterns: Examine hotel booking data to uncover trends in customer preferences and develop actionable recommendations.
  3. NFL Attendance Insights: Explore attendance data to identify key factors influencing game turnout and suggest promotional strategies.
  4. Spotify Genre Trends: Investigate Spotify music data to analyze listening habits and provide insights for music industry stakeholders.
  5. Municipal Data Insights: Utilize open-source Minneapolis datasets to explore community trends and propose data-driven solutions for city planning.


Critères supplé mentaires pour entreprise

Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:

  • Q1 - Texte court
    What relevant information/data will you be able to provide for this project?
  • Q2 - Texte court
    Are you available for a brief phone call to discuss the project scope and determine if it is suitable for this experience?
  • Q3 - Texte court
    Are there any intellectual property considerations or restrictions for this project?